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The velocity field in the immediate vicinity of a curved vortex comprises a circulation
around the vortex, a component due to the vortex curvature, and a ‘remainder’ due
to the more distant parts of the vortex. The first two components are relatively well
understood but the remainder is known only for a few specific vortex geometries,
most notably, the vortex ring. In this paper we derive a closed form for the remainder
that is valid for all values of the pitch of an infinite helical vortex. The remainder
is obtained firstly from Hardin’s (1982) solution for the flow induced by a helical
line vortex (of zero thickness). We then use Ricca’s (1994) implementation of the
Moore & Saffman (1972) formulation to obtain the remainder for a helical vortex
with a finite circular core over which the circulation is distributed uniformly. It is
shown analytically that the two remainders differ by 1/4 for all values of the pitch.
This generalizes the results of Kuibin & Okulov (1998) who obtained the remainders
and their difference asymptotically for small and large pitch. An asymptotic analysis
of the new closed-form remainders using Mellin transforms provides a complete
representation by a residue series and reveals a minor correction to the asymptotic
expression of Kuibin & Okulov (1998) for the remainder at small pitch.

1. Introduction
Helical vortices are important for at least three reasons. First, they model the tip

vortices behind propellers, wind turbines and rotors in hover or vertical flight. It is
usually assumed that, sufficiently far from the blades, the wake is fully developed
and the tip vortices can be considered as infinite helical vortices of constant radius
and pitch. In that case, the velocity field in the wake depends on the pitch as well as
the circulation of the vortices (Wood 1998), and so their geometry and behaviour is
relevant to machine performance. In particular for wind turbines, it is important to
improve wake modelling in the high-thrust, small-pitch region where the traditional
equations that lead, for example, to the Betz limit, break-down.

Secondly, infinite helical vortices of constant pitch p – the only type considered in
this paper – represent the next level of geometrical complexity after the circular vortex
ring. The vortex ring is the prototype geometry for analysing the combined effects of
curvature and core structure, and is, therefore, treated extensively in Saffman’s (1992)
monograph. Mathematically, curvature gives rise to a logarithmic singularity in the
expression for the self-induced motion of a vortex; see e.g. Ricca (1994, formula (1.2))
and Kuibin & Okulov (1998, formula (1)). In comparison to the vortex ring, the helical
vortex introduces the effects of torsion and, particularly at small pitch, provides an
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example of the importance of the remainder term, denoted as Qf in the expressions
just referred to. The velocity of a vortex ring is dominated by the logarithmic term,
but Kuibin & Okulov (1998) and Wood (1998) show that, for a helix, Qf ∼ p−1 as
p ↓ 0.

Thirdly, helical vortices, like vortex rings, are one of a small number of vortex
geometries that can translate without deformation. This means that the self-induced
velocity of primary interest is in the binormal direction; in particular, the remainder
term for the binormal velocity is the subject of this paper. The starting point for the
analysis and the necessary background in the geometry of helical vortices is provided
by Ricca (1994). For the sake of brevity, we will omit the details that can be found
in the sections of his paper to which we refer.

The expression for the self-induced velocity of a helix can be obtained either from
Hardin’s (1982) solution for the inviscid flow induced by a line helical vortex (of
zero thickness), or from the Moore & Saffman (1972) method of directly treating
the Biot–Savart law. In the latter method, the singularity is removed by subtracting
the effects of the osculating circular vortex, whereupon the known velocity due to
this vortex is added; see also Saffman (1992, § 11.4). The primary restriction on the
Moore & Saffman procedure is that the diameter of the vortex core remain small
compared to its radius of curvature. This is, apparently, the case for helical vortices
trailing from wind turbines and propellers, e.g. Wood (1998). The procedure can be
viewed as a generalization of the simple ‘cut-off’ method of removing the curvature
singularity in the Biot–Savart law by altering the limits of the integral. Since the
added velocity due to the osculating vortex depends on the structure (its core size,
distribution of vorticity, etc.) of the vortex, the velocities obtained by the two methods
will usually differ. In this paper we determine the remainder terms for the binormal
velocity, for which we will use Ricca’s (1994) notation of CH and CMS for the Hardin
(1982) and the Moore & Saffman (1972) terms, respectively. In the next section,
we derive a closed-form solution for CH that is valid for all values of p. In § 3 we
start from Ricca (1994, formulae (3.15)–(3.17)) for a circular-core vortex over which
the vorticity is distributed uniformly, and derive a closed-form solution for CMS . The
important result that CH and CMS differ by 1/4 for all p follows immediately. Section 4
considers the asymptotics of the new solutions and the numerical treatment of the
integral appearing in the solutions; the integral cannot be evaluated in closed form.
Specifically, we use Mellin transforms to generate the asymptotic expansions for small
and large pitch. The expansion for large pitch is consistent with the well-known result
due to Kelvin (1880). Our expression for small pitch provides a minor correction to
that of Kuibin & Okulov (1998).

In this paper, all lengths are normalized by the vortex radius (not the radius of
the vortex core), so that, for example, the pitch, p, is the normalized axial distance
traversed by a material point as the vortex angle increases by 2π. In conformity with
Ricca (1994) and Kuibin & Okulov (1998), all velocities are scaled by Γ/4π, where Γ
is the circulation of the vortex. The radial direction is r, and ε is the always positive
radial distance from the vortex to any point in the flow, located at the same vortex
angle.

2. Self-induced velocity obtained from Hardin’s (1982) solution
Hardin (1982) obtained the general solution for the inviscid flow induced by a

helical line vortex in terms of separate solutions valid for the interior flow (r<1) and
the exterior flow (r>1). In this section we adopt Ricca’s (1994, § 4.1.1) re-elaboration
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of Hardin’s solution for the binormal velocity at a distance ε exterior, or interior,
to the vortex. The exterior and interior solutions involve a Kapteyn series which is
analysed (for ε ↓ 0) by the method of Boersma & Yakubovich (1998). In this manner
we determine the remainder term, CH , as the common limit of Cext and Cint (the
exterior and interior forms of the remainder term), when ε ↓ 0.

According to Ricca (1994, formulae (4.10)–(4.12)) with an appropriate change of
notation, Cext is given by

Cext = −2p(1 + p2)1/2

1 + ε(1 + p2)
− 4(1 + ε)(1 + p2)3/2

p2[1 + ε(1 + p2)]
P(ε, p) +

2

ε
+ log ε, (2.1)

where

P(ε, p) =

∞∑
ν=1

νKν(ν[1 + ε(1 + p2)]/p) I ′ν(ν/p). (2.2)

Here, Iν( · ) and Kν( · ) are modified Bessel functions of order ν, and the prime denotes
differentiation with respect to the argument. The series (2.2) is a Kapteyn series which
we will now analyse for ε ↓ 0. Introduce the notation

S(a, b) =

∞∑
m=1

Km(ma) Im(mb), (2.3)

where the series is convergent for a > b > 0. Then the Kapteyn series (2.2) is equal
to the derivative ∂S(a, b)/∂b, with a = [1 + ε(1 + p2)]/p and b = 1/p. Boersma &
Yakubovich (1998) established the integral representation

S(a, b) =
1

2

∫ ∞
0

[
(t2 + a2 + b2 − 2ab cos t)−1/2

− 1

π

∫ π

0

(t2 + a2 + b2 − 2ab cos s)−1/2 ds

]
dt, (2.4)

which yields, by differentiation with respect to b,

∂S(a, b)

∂b
= −1

2

∫ ∞
0

b− a cos t

(t2 + a2 + b2 − 2ab cos t)3/2
dt

+
1

2π

∫ ∞
0

dt

∫ π

0

b− a cos s

(t2 + a2 + b2 − 2ab cos s)3/2
ds. (2.5)

Here, the second (double) integral turns out to vanish, as can be seen by interchanging
the order of integration and using the auxiliary integrals∫ ∞

0

dt

(t2 + a2 + b2 − 2ab cos s)3/2
=

1

a2 + b2 − 2ab cos s
,

1

2π

∫ π

0

b− a cos s

a2 + b2 − 2ab cos s
ds = 0, a > b > 0.

Substituting a = b(1 + ε′) in (2.5), with ε′ = ε(1 + p2), we find

∂S(a, b)

∂b

∣∣∣∣
a=b(1+ε′)

= − 1

2b

∫ ∞
0

1− (1 + ε′) cos bt

[t2 + ε′2 + 2(1 + ε′)(1− cos bt)]3/2
dt, (2.6)

where the change in integration variable from t to bt reinforces the similarity with the
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Biot–Savart integral. The behaviour of the integral (2.6) as ε′ ↓ 0, was investigated by
Boersma & Yakubovich (1998). Their final result, translated to the present notation,
reads

∂S(a, b)

∂b

∣∣∣∣
a=b(1+ε′)

=
1

2b(1 + b2)1/2

1

ε′
+

b

4(1 + b2)3/2
log ε′

− b

4(1 + b2)3/2
log (2(1 + b2)1/2)

− 1

2b

∫ ∞
0

{
1− cos bt

[t2 + 2(1− cos bt)]3/2

− b2

2(1 + b2)3/2

H(1− t)
t

}
dt+ o(1), (ε′ ↓ 0) (2.7)

in which H( · ) denotes the unit step function, and o(1) is Landau’s notation for an
expression that tends to 0 when ε′ ↓ 0.

Recall that the derivative ∂S(a, b)/∂b is related to P(ε, p) from (2.2). Thus, by
substituting b = 1/p, ε′ = ε(1 + p2), in (2.7), we obtain the small-ε expansion

P(ε, p) =
p2

2(p2 + 1)3/2

1

ε
+

p2

4(p2 + 1)3/2
log ε+

p2

4(p2 + 1)3/2
log[(p2 + 1)1/2/2]

− 1
4
p2W (p) + o(1), (ε ↓ 0) (2.8)

where

W (p) =

∫ ∞
0

{
2(1− cos t)

[p2t2 + 2(1− cos t)]3/2
− 1

(p2 + 1)3/2

H(1− t)
t

}
dt. (2.9)

Next, we insert (2.8) into (2.1), re-expand for small ε, and identify the ε ↓ 0-limit of
Cext with CH . As a result we find

CH = log 2 + 2p2 − 2p(p2 + 1)1/2 − 1
2

log (p2 + 1) + (p2 + 1)3/2W (p), (2.10)

which is our new closed-form expression for CH , valid for all values of p. In § 4 we
examine the asymptotics of W (p) and CH , both for large and small p. In addition, we
consider the numerical evaluation of W (p) which is straightforward except at very
small values of p.

To complete this Section, we briefly discuss the ε ↓ 0-limit of Cint, given by (Ricca
1994, formulae (4.8), (4.9), (4.12))

Cint =
2(1 + p2)1/2

p
− 4(1− ε)(1 + p2)3/2

p2[1− ε(1 + p2)]
Q(ε, p)− 2

ε
+ log ε, (2.11)

where

Q(ε, p) =

∞∑
ν=1

νK ′ν(ν/p) Iν(ν[1− ε(1 + p2)]/p). (2.12)

From the analysis of Boersma & Yakubovich (1998) we obtain the following small-ε
expansion for the Kapteyn series (2.12):

Q(ε, p) = − p2

2(p2 + 1)3/2

1

ε
+

p2

4(p2 + 1)3/2
log ε+

p2

4(p2 + 1)3/2
log [(p2 + 1)1/2/2]

+ 1
2
p− 1

4
p2W (p) + o(1), (ε ↓ 0) (2.13)
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where W (p) is given by (2.9). Obviously, the 1/ε-terms in (2.8) and (2.13) – which are
opposite – relate to the circulation around the vortex, whereas the log ε-terms – which
are equal – relate to the curvature. The remaining terms are identical except for the
term p/2 in (2.13), which arises from the constant difference between Hardin’s (1982)
exterior and interior solutions; see Hardin (1982, formulae (8), (9) for w). On inserting
(2.13) into (2.11) and letting ε ↓ 0, we get again the limit result (2.10), as anticipated
at the outset.

3. Self-induced velocity obtained from the Moore–Saffman procedure
Ricca (1994, § 3) derived the remainder term, CMS , arising from the procedure of

Moore & Saffman (1972). The latter authors remove the singularity in the Biot–
Savart integral by subtracting the effects of the osculating vortex ring of the same
structure, and then adding the known contribution from that ring. Ricca described
the formulation and its implementation in detail which we will not reproduce. The
starting point of our analysis is Ricca (1994, formulae (3.15)–(3.17)) for an osculating
vortex with a circular core over which the vorticity is distributed uniformly. In our
notation, these expressions can be combined as

CMS = − 1
4

+ 3 log 2 + 2

∫ ∞
0

{
(p2 + 1)1/2 p

2t sin t+ (1− p2)(1− cos t)

[p2t2 + 2(1− cos t)]3/2

− 1

23/2(p2 + 1)1/2

H(π(p2 + 1)1/2 − t)
[1− cos(t/(p2 + 1)1/2)]1/2

}
dt. (3.1)

Ricca showed that the expression (3.1) reduces to the result first derived by Kelvin
(1880) for large pitch – the Kelvin limit – and then evaluated the integral numerically
for smaller pitch. We now show that the integral in (3.1) can be significantly simplified
before resorting to numerical analysis.

The second part of the integral in (3.1) can be simplified as follows:

1

23/2(p2 + 1)1/2

∫ π(p2+1)1/2

δ

dt

[1− cos(t/(p2 + 1)1/2)]1/2

=
1

23/2

∫ π

δ/(p2+1)1/2

dt

(2 sin2 1
2
t)1/2

= − 1
2

log tan

(
δ

4(p2 + 1)1/2

)
= 1

2
log(4(p2 + 1)1/2)− 1

2
log δ + O(δ2)

=
1

2

∫ 1

δ

dt

t
+ log 2 + 1

4
log(p2 + 1) + O(δ2). (3.2)

Inserting (3.2) into (3.1) we obtain

CMS = − 1
4

+ log 2− 1
2

log(p2 + 1)

+

∫ ∞
0

{
2(p2 + 1)1/2 p

2t sin t+ (1− p2)(1− cos t)

[p2t2 + 2(1− cos t)]3/2
− H(1− t)

t

}
dt

= − 1
4

+ log 2− 1
2

log(p2 + 1) + (p2 + 1)3/2W (p)

+ 2p2(p2 + 1)1/2

∫ ∞
0

t sin t− 2(1− cos t)

[p2t2 + 2(1− cos t)]3/2
dt, (3.3)
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where W (p) is given by (2.9). The final integral in (3.3) is elementary because the
integrand has a primitive function, so that∫ ∞

0

t sin t− 2(1− cos t)

[p2t2 + 2(1− cos t)]3/2
dt =

−t
[p2t2 + 2(1− cos t)]1/2

∣∣∣∣∞
0

= −1

p
+

1

(p2 + 1)1/2
. (3.4)

Combining (3.3) and (3.4) we find

CMS = − 1
4

+ log 2 + 2p2 − 2p(p2 + 1)1/2 − 1
2

log (p2 + 1) + (p2 + 1)3/2W (p), (3.5)

and a comparison with (2.10) gives immediately

CMS = CH − 1
4

(3.6)

for any value of the vortex pitch, p. The results (3.5) and (3.6) form the main
contribution of this paper. The identity (3.6) was shown to hold asymptotically for
both small and large p by Kuibin & Okulov (1998), and was found by Ricca (1994)
to be consistent with his numerical results.

It must be emphasized that the term 1/4 in (3.5) and (3.6) follows from the
specific structure of the osculating vortex: a circular core over which the vorticity
is distributed uniformly. It can be shown (see e.g. Saffman 1992, § 11.4), that the
inclusion of additional effects, such as flow along the axis of the vortex, modifies the
term in a straightforward manner. The only restriction on the ability to so modify
(3.5) and (3.6) would appear to be contained within the fundamental restriction of
the Moore–Saffman procedure, namely, that the core radius, a, is small compared to
the helix curvature, that is, a� 1 for helices of small pitch.

It is believed that the integral W (p) cannot be evaluated in closed form. Therefore,
in the next section we consider the asymptotic behaviour of W (p) and CMS , and the
numerical evaluation of W (p) over the useful range of pitch values.

4. Asymptotics and numerical evaluation of W (p)

The expressions (2.10) for CH and (3.5) for CMS contain the integral W (p), which
cannot be evaluated in closed form. We now examine the behaviour of W (p) for
large and small pitch, as did Kuibin & Okulov (1998). They began, in each case, by
asymptotically expanding the Bessel functions that appear in (2.2). Both Ricca (1994)
and Kuibin & Okulov (1998) show that the large-p form is consistent with the Kelvin
limit, which can be derived directly from the Biot–Savart law; see e.g. Saffman (1992,
§ 11.2). Thus the large-p limit is well known. However, the small-p limit which is much
more important and interesting, is less well understood. In this section we establish
the asymptotics of W (p) in a combined treatment of the two cases of large and small
p. The Mellin-transform method to be employed furnishes the complete asymptotic
expansions of W (p) both for large and small p.

We begin by rewriting W (p) from (2.9) as

W (p) =

∫ ∞
0

{
sin2 t

(p2t2 + sin2 t)3/2
− 1

(p2 + 1)3/2

H(1/2− t)
t

}
dt. (4.1)

The asymptotic expansion of W (p) for large p is readily found by expansion of the
integrand in (4.1) in powers of p−1, followed by a term-by-term integration. However,
the small-p limit is not so easily obtained. As an alternative, we take the Mellin
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transform of W (p), defined by

M{W (p)} =

∫ ∞
0

W (p) pz−1dp (4.2)

for complex z. To evaluate M{W (p)}, we need the auxiliary result

M{(p2 + a2)−3/2} = az−3 Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
, (4.3)

valid for 0 < Re(z) < 3. Here, Γ ( · ) denotes the gamma function. Thus we find

M{W (p)} =
Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
L(z), 1 < Re (z) < 3, (4.4)

where

L(z) =

∫ ∞
0

[ | sin t|z−1

tz
− H(1/2− t)

t

]
dt. (4.5)

Obviously, L(z) is analytic for Re(z) > 1 and this explains the range of validity in
(4.4). The relevant aspects of the behaviour of L(z) are discussed in the Appendix.
By means of the Mellin inversion formula we arrive at the representation

W (p) =
1

2πi

∫ c+i∞

c−i∞
Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
L(z) p−zdz, 1 < c < 3. (4.6)

The integrand in (4.6) is analytic to the right of the contour, except for simple poles
at z = 2k + 3, k = 0, 1, 2, . . . , with residues

Res
z=2k+3

Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
L(z) p−z = (−1)k+1 (3/2)k

k!
L(2k + 3) p−2k−3, (4.7)

where Pochhammer’s symbol (3/2)k is defined by

(3/2)0 = 1, (3/2)k = 3
2
· 5

2
· · · (k + 1

2
) for k = 1, 2, 3, . . . .

By closing the contour in (4.6) to the right, we are led to the large-p representation
of W (p) by the residue series

W (p) ∼
∞∑
k=0

(−1)k
(3/2)k
k!

L(2k + 3) p−2k−3 (p→∞) (4.8)

which is identical to the result obtained by the approach indicated below (4.1). It can
be shown that the sequence {L(2k+3)} is decreasing, with L(2k+3) > A− 1

2
log(k+1)

for k = 0, 1, 2, . . ., where A is some constant. Consequently, the asymptotic series (4.8)
is convergent for p > 1, and ∼ may be replaced by an equality sign. With L(3) and
L(5) given by (A 17) and (A 18), we obtain the large-p expansion

W (p) = (−E + 3
2
)p−3 − 3

2
(−E + 25

12
− 4

3
log 2)p−5 + O(p−7) (p→∞) (4.9)

where E = 0.5772 . . . is Euler’s constant. Substitution of the first term on the right
of (4.9) into the expression (3.5) for CMS gives the Kelvin limit; see e.g. Ricca (1994,
formula (3.20)) and Kuibin & Okulov (1998, formula (24)).

Next, we determine the asymptotic expansion of W (p) for small p by closing the
contour in (4.6) to the left. This requires knowledge of the singularities of L(z) in the
half-plane Re(z) 6 1. The important results are derived in the Appendix where, for
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example, it is shown that L(z) has simple poles at z = 1 and z = −2k, k = 0, 1, 2, . . .,
with residues

Res
z=1

L(z) = 1, Res
z=−2k

L(z) = −1. (4.10)

Consider now the function 1
2
[ψ(z/2)−ψ(3/2−z/2)]− log 2, where ψ(z) = Γ ′(z)/Γ (z).

This function has simple poles at z = −2k, k = 0, 1, 2, . . ., with the same residues as
has L(z). Thus the difference

R(z) = L(z)− 1
2
[ψ(z/2)− ψ(3/2− z/2)] + log 2 (4.11)

has removable singularities at z = −2k, k = 0, 1, 2, . . .. Using the representation (A 11)
for L(z), and some standard properties of the ψ-function (Abramowitz & Stegun
1965, formulae 6.3.7, 6.3.8), we deduce that R(z) can be expressed as

R(z) = − 1

z − 1
+ ψ(1/2− z/2) + E + 2 log 2 + P (z), (4.12)

where P (z) is given by (A 12). The Mellin transform (4.4) is now rewritten as

M{W (p)} =
Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
{ 1

2
[ψ(z/2)− ψ(3/2− z/2)]− log 2}

+
Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
R(z), 1 < Re(z) < 3. (4.13)

Note that the first term on the right is the Mellin transformM{(p2 + 1)−3/2 log(p/2)},
as can be seen by differentiating (4.3) with respect to z. Thus we have, by inversion
of (4.13),

W (p) = (p2 + 1)−3/2 log(p/2)

+
1

2πi

∫ c+i∞

c−i∞
Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
R(z) p−zdz, 1 < c < 3. (4.14)

The integrand in (4.14) is analytic to the left of the contour, except for a simple pole
at z = 1, due to R(z), and simple poles at z = −2k, k = 0, 1, 2, . . ., due to Γ (z/2).
Accordingly, W (p) can be represented by the residue series

W (p) ∼ (p2 + 1)−3/2 log(p/2)

+

[
Res
z=1

+

∞∑
k=0

Res
z=−2k

]
Γ (z/2)Γ (3/2− z/2)

2Γ (3/2)
R(z) p−z (p ↓ 0). (4.15)

By use of (4.10) the residue at z = 1 is found to be

Γ (1/2)Γ (1) p−1

2Γ (3/2)
Res
z=1

L(z) = p−1. (4.16)

The residue at z = 0 is given by

Γ (3/2)

2Γ (3/2)
R(0) Res

z=0
Γ (z/2) = R(0). (4.17)

To find R(0), we note that

P (0) =

∞∑
n=1

[
Γ (n+ 1/2)

Γ (n+ 1/2)

1

n
− 1

n

]
= 0,
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hence

R(0) = 1 + ψ(1/2) + E + 2 log 2 + P (0) = 1. (4.18)

Next, the residue at z = −2 is given by

Γ (5/2)

2Γ (3/2)
R(−2) p2 Res

z=−2
Γ (z/2) = − 3

2
R(−2) p2. (4.19)

The required value of R(−2) is found from

P (−2) =

∞∑
n=1

[
Γ (n+ 3/2)

Γ (n− 1/2)

1

n3
− 1

n

]
=

∞∑
n=1

[
n2 − 1/4

n3
− 1

n

]
= − 1

4
ζ(3), (4.20)

where ζ( · ) denotes the Riemann zeta-function, so that

R(−2) = 1
3

+ ψ
(

3
2

)
+ E + 2 log 2 + P (−2) = 7

3
− 1

4
ζ(3). (4.21)

By inserting these results into (4.15) we obtain the small-p expansion

W (p) = p−1 + (p2 + 1)−3/2 log(p/2) + 1 +
[− 7

2
+ 3

8
ζ(3)

]
p2 + O(p4) (p ↓ 0). (4.22)

By substitution of (4.22) into (3.5), followed by a re-expansion for small p, we find

CMS = − 1
4

+ p−1 + log p+ 1− 1
2
p+

[
3
8
ζ(3)− 1

2

]
p2 − 5

8
p3 + O(p4) (p ↓ 0) (4.23)

which agrees with Kuibin & Okulov (1998, formula (25)), except that the term − 5
8
p3

is missing in their result.
For the sake of completeness, and for use in discussing the numerical evaluation of

W (p), we note that generally in (4.15) the residue at z = −2k, k = 0, 1, 2, . . ., is given
by

Γ (k + 3/2)

2Γ (3/2)
R(−2k) p2k Res

z=−2k
Γ (z/2) = (−1)k

(3/2)k
k!

R(−2k) p2k, (4.24)

in which, by (4.12),

R(−2k) =
1

2k + 1
+

k∑
m=1

1

m− 1
2

+ P (−2k). (4.25)

Thus the complete asymptotic expansion of W (p) for small p reads

W (p) ∼ p−1 + (p2 + 1)−3/2 log(p/2)

+

∞∑
k=0

(−1)k
(3/2)k
k!

[
1

2k + 1
+

k∑
m=1

1

m− 1
2

+ P (−2k)

]
p2k (p ↓ 0). (4.26)

The value of P (−2k) is easily expressible as a linear combination of values ζ(2m+ 1),
m = 1, 2, . . . , k. For example, by setting z = −4 and z = −6 in (A 12), it is found that

P (−4) =

∞∑
n=1

[
(n2 − 1/4)(n2 − 9/4)

n5
− 1

n

]
= − 5

2
ζ(3) + 9

16
ζ(5), (4.27)

P (−6) =

∞∑
n=1

[
(n2 − 1/4)(n2 − 9/4)(n2 − 25/4)

n7
− 1

n

]
= −35

4
ζ(3) +

259

16
ζ(5)− 225

64
ζ(7). (4.28)



272 J. Boersma and D. H. Wood

The corresponding terms of the series in (4.26) are given by[
43

8
− 75

16
ζ(3) +

135

128
ζ(5)

]
p4 −

[
337

48
− 1225

64
ζ(3) +

9065

256
ζ(5)− 7875

1024
ζ(7)

]
p6

= 0.834 p4 + 12.976 p6. (4.29)

Addition of these terms to (4.22) yields a small-p expansion that is correct up to order
O(p8), as p ↓ 0. For large values of k, the n = 1 term dominates the series for P (−2k)
in (A 12), so that

P (−2k) ∼ Γ (3/2 + k)

Γ (3/2− k) = (−1)k−1 k + 1/2

k − 1/2
[(1/2)k]

2 (k →∞). (4.30)

It follows that the series in (4.26) is divergent for all p > 0, and is only an asymptotic
expansion.

The numerical evaluation of W (p) is made difficult, at small pitch, by the rapid
change in the integrand as the vortex ‘returns’ every revolution to the immediate
vicinity of the point at which the velocity is required. This, incidentally, is the reason
for the large remainder term at small pitch. Whether the magnitude of this term is
related to the torsion of the helical vortex, as implied by the title of Ricca’s (1994)
paper, is debatable, especially since CMS , say, increases as p−1 as the torsion goes to
zero.

We considered and tested a number of methods for numerically evaluating W (p)
given by (4.1), all of which proved difficult to implement accurately at small p, where
t has to be very large for p2t2 to dominate the integrand. A change of variable
to u = 1/t leads to problems associated with the behaviour of sin(1/u) as u ↓ 0.
The asymptotic remainder method of Wood & Meyer (1991) for the n identical but
displaced vortices from an n-bladed turbine or propeller, which relies on significant
cancellation between the n integrands, was found to be inappropriate for the infinite
integral for one vortex. The method finally chosen was based on rewriting (4.1) as

W (p) = A0 +

N−1∑
k=1

Ak +WN(p), (4.31)

where

A0 =

∫ π

0

{
sin2 t

(p2t2 + sin2 t)3/2
− 1

(p2 + 1)3/2

1

t

}
dt+

log(2π)

(p2 + 1)3/2
, (4.32)

Ak =

∫ π

0

sin2 t

[p2(t+ kπ)2 + sin2 t]3/2
dt, (4.33)

and

WN(p) =

∫ ∞
Nπ

sin2 t

(p2t2 + sin2 t)3/2
dt. (4.34)

Here, N is an integer such that Nπp > 1. The integrals in (4.32) and (4.33) were
evaluated using adaptive quadrature, as explained below. The integral WN(p) was
approximated analytically in a manner that yields explicit error estimates and a
suitable lower bound on N. The approximation is based on expanding the integrand
in (4.34) in powers of p−1, followed by a term-by-term integration. Retaining only the
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first two terms, we find

WN(p) = B0p
−3 − 3

2
B1p

−5 +

∞∑
m=2

(−1)m
(3/2)m
m!

Bm

p2m+3
, (4.35)

where

Bm =

∫ ∞
Nπ

(sin t)2m+2

t2m+3
dt. (4.36)

Clearly

0 6 Bm 6
(Nπ)−2m−2

2m+ 2
,

which leads to an estimate for the final series in (4.35) of∣∣∣∣∣
∞∑
m=2

(−1)m
(3/2)m
m!

Bm

p2m+3

∣∣∣∣∣ 6 1

2p

∞∑
m=2

(3/2)m
(m+ 1)!

(Nπp)−2m−2 6
5

16
p−1

∞∑
m=2

(Nπp)−2m−2

6


5

16
p−1 (Nπp)−6

1− (Nπp)−2
, 0 < p 6 1,

5

16
p−7 (Nπ)−6

1− (Nπ)−2
, p > 1.

(4.37)

Next, we evaluate B0 and B1 through repeated integration by parts. For B0 we deduce

B0 = 1
4
(Nπ)−2 − 3

8
(Nπ)−4 + 15

8
(Nπ)−6 + ε0, (4.38)

where

ε0 = −315

8

∫ ∞
Nπ

sin(2t)

t8
dt

can be estimated by

|ε0p−3| 6 315

8p3

∫ ∞
Nπ

dt

t8
=

45

8
(Nπ)−7p−3. (4.39)

Similarly, B1 is reduced to

B1 =
3

32
(Nπ)−4 − 75

128
(Nπ)−6 + ε1 (4.40)

with the estimate ∣∣ 3
2
ε1p
−5
∣∣ 6 1485

512
(Nπ)−7p−5. (4.41)

In evaluating W (p), we aimed to achieve an accuracy of six significant digits. To that
end, we select N as the smallest integer such that Nπ > 10 and Nπp > 10. Then the
estimates (4.37), (4.39) and (4.41) yield∣∣∣∣∣

∞∑
m=2

(−1)m
(3/2)m
m!

Bm

p2m+3

∣∣∣∣∣ 6
{

0.32p−110−6, 0 < p 6 1

0.32p−710−6, p > 1,

|ε0p−3| 6 0.57 min{1, p−3}10−6,

∣∣∣∣32ε1p−5

∣∣∣∣ 6 0.3 min{1, p−5}10−6.

Since W (p) ∼ p−1 as p ↓ 0, and W (p) ∼ (−E+3/2)p−3 as p→∞, the desired accuracy
is easily obtainable for the approximation to the integral WN(p).
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Pitch (a) (b) (c) (d)

0.01 0.957022×102 0.957022×102 0.957022×102

0.05 0.173173×102 0.173173×102 0.173173×102

0.1 0.801822×101 0.801816×101 0.801824×101

0.2 0.370710×101 0.370700×101 0.370834×101

0.3 0.239240×101 0.239183×101 0.239858×101

0.4 0.174543×101 0.172391×101 0.174526×101

0.5 0.134138×101

0.6 0.105695×101

0.7 0.844909
0.8 0.682350
0.9 0.555822
1.0 0.456367 0.499022×10−1

2.0 0.928365×10−1 0.880705×10−1

3.0 0.308916×10−1 0.305851×10−1

4.0 0.136084×10−1 0.135661×10−1

5.0 0.711198×10−2 0.710295×10−2

6.0 0.416244×10−2 0.415990×10−2

7.0 0.263927×10−2 0.263840×10−2

8.0 0.177602×10−2 0.177567×10−2

9.0 0.125119×10−2 0.125104×10−2

10.0 0.914128×10−3 0.914056×10−3

Table 1. Numerical evaluation of W (p) compared to the asymptotic expansions. (a) W (p)
determined by numerical quadrature; (b) W (p) obtained from the small-p expansion (4.22);
(c) W (p) obtained from the small-p expansion (4.22) plus the terms (4.29); (d) W (p) obtained
from the large-p expansion (4.9).

The remaining integrals, in (4.32) and (4.33), were evaluated by adaptive quadrature,
based simply on repeated bisection of the interval of integration, [0, π], until the desired
accuracy was achieved. Specifically, we used the Gauss–Kronrod rule in the form of
routine GL15T described by Kahaner, Moler & Nash (1989). For the smallest pitch
considered, p = 0.01, we obtained the following data: N = 319, B0p

−3 = 0.24892,
−3/2B1p

−5 = −1.394 × 10−3; 780 evaluations of the integrands were required, of
which 405 were used to determine W (p); the routine’s absolute error estimate was
2.7×10−7. The program was checked against the MathematicaR procedure NIntegrate
which also uses the Gauss–Kronrod rule. It gave identical results to those shown in
table 1. No attempt was made to optimize the subdivision of the interval [0, π], or to
explore ways of approximating the sum in (4.31) for large values of k. Nevertheless,
we believe that all the tabulated values of W (p) are accurate to the six significant
digits given.

The numerical results for W (p) have been collected in table 1. Column (a) comprises
the values of W (p) determined by the numerical quadrature procedure described
above. The values of W (p) in columns (b) and (c) are based on the small-p expansions
(4.22), and (4.22) supplemented with the terms (4.29); these expansions are correct up
to O(p4) and O(p8), respectively, as p ↓ 0. The complete agreement between columns
(a), (b) and (c), for p = 0.01 and p = 0.05, supports our belief that all the tabulated
values are accurate to the six significant digits given. The final column (d) contains the
values of W (p) based on the large-p expansion (4.9). A comparison between columns
(a) and (b) shows that the small-p expansion (4.22) is accurate to within 1% for
p . 0.4, which covers virtually the whole range of interest for wind turbines. Because
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W (p) is the dominant term in CMS or CH at small pitch, this limit on the accuracy
of W (p) also applies to the full remainder term. For example, CMS = 2.00798 when
p = 0.4, accurate to six digits, as compared to CMS = 1.98109 based on the small-p
expansion of W (p). Similarly, the large-p expansion (4.9) is accurate to within 10%
for p & 1 and within 1% for p & 5.

5. Summary and conclusions
In this paper we have derived expressions for the remainder term appearing in

the binormal velocity of an infinite helical vortex. The remainder was derived first
from Hardin’s (1982) solution for the inviscid flow around a line vortex of zero
thickness. The primary result is the expression (2.10) for CH . Then we derived in
§ 3 the remainder from the Moore & Saffman (1972) procedure of calculating the
binormal velocity by subtracting the curvature singularity resulting from a specific
vortex structure: a circular core over which the vorticity is distributed uniformly. The
main result is the expression (3.5) for CMS , from which it follows immediately that
CMS and CH differ by 1/4 for all values of the vortex pitch. This generalizes the
findings of Kuibin & Okulov (1998), who obtained this difference asymptotically at
small and large pitch. It was pointed out that the difference between the remainders
depends on the vortex structure, but is always independent of the pitch.

The analysis of Kuibin & Okulov (1998) began by replacing the Bessel functions
in the Kapteyn series (2.2) and (2.12) by asymptotic expansions for small and large
pitch. In § 4 we describe a more consistent, but also more complex, analysis beginning
with the only non-closed-form constituent of CH and CMS , namely, W (p). A Mellin-
transform method was used to obtain complete residue series for W (p) at both large
and small pitch. The asymptotic expansion for large p leads to binormal velocities
consistent with the well-known Kelvin limit. The asymptotic expansion for small p
reveals a minor correction to the expansion of Kuibin & Okulov (1998). One particular
practical use for the small-p expansion is that W (p) is closely related to the Biot–
Savart integrals for the induced velocities on rotating blades in boundary-integral
or panel methods used to predict the performance of wind turbines, propellers and
rotors. The asymptotic analysis could be used to check the accuracy of quadrature
schemes for the Biot–Savart integrals. Here, the calculation of the self-induced velocity
at the smallest pitch is likely to be the most challenging problem.

The authors’ names appear alphabetically. The mathematical analysis was done by
J. B.; then, D. H. W. performed the numerical quadrature in § 4 and wrote most of
the paper. The collaboration arose from the problem submitted to SIAM Review by
Wood & Guang (1997), and its solution by Boersma & Yakubovich (1998). We thank
the editors of the Problem Section, Professors Cecil Rousseau and Otto Ruehr, for
bringing us together in the final issue of the Problem Section. We also record our
thanks to Professor Ruehr and Dr J. K. M. Jansen for their advice on, and checking
of, the numerical evaluation of W (p). D. H. W.’s work is funded by the Australian
Research Council.

Appendix. Analyticity of L(z)

The function L(z) as introduced in (4.5), is analytic for Re(z) > 1. In this Appendix
we show that L(z) can be analytically continued as a meromorphic function with
simple poles at z = 1 and z = −2k, k = 0, 1, 2, . . .. We then determine the residues



276 J. Boersma and D. H. Wood

of L(z) which are required for the small-p expansion (4.15) of W (p). Finally, we
evaluate L(3) and L(5) which are used in (4.8) to obtain the large-p expansion (4.9)
of W (p).

We start by rewriting L(z) from (4.5) as

L(z) =

∫ π

0

[
(sin t)z−1

∞∑
k=0

1

(t+ kπ)z
− H(1/2− t)

t

]
dt

=

∫ π

0

[
(sin t)z−1π−zζ

(
z,
t

π

)
− H(1/2− t)

t

]
dt, (A 1)

where ζ with two arguments denotes the generalized zeta-function, extensively dis-
cussed in Erdélyi et al. (1953, § 1.10). As a function of z, ζ(z, t/π) is analytic in the
whole z-plane, except for a simple pole at z = 1 with

Res
z=1

ζ

(
z,
t

π

)
= 1.

Furthermore

π−zζ
(
z,
t

π

)
∼ t−z as t ↓ 0,

so that the integral in (A 1) is convergent for Re(z) > 0, z 6= 1. Consequently, L(z) is
analytic for Re(z) > 0, except for a simple pole at z = 1 with

Res
z=1

L(z) =

∫ π

0

π−1dt = 1. (A 2)

To avoid any difficulties with divergent integrals, we modify L(z) into L(z, δ), defined
by

L(z, δ) =

∫ π

0

[
(sin t)z−1+δπ−zζ

(
z,
t

π

)
− H(1/2− t)

t1−δ

]
dt, δ > 0 (A 3)

so that

lim
δ↓0 L(z, δ) = L(z). (A 4)

The second part of the integral (A 3) is readily evaluated as −2−δ/δ. In the first part
we substitute

π−zζ
(
z,
t

π

)
=

∞∑
k=0

1

(t+ kπ)z
=

∞∑
k=0

1

Γ (z)

∫ ∞
0

sz−1e−(t+kπ)s ds

=
1

Γ (z)

∫ ∞
0

sz−1 e−ts

1− e−πs
ds, (A 5)

valid for Re(z) > 1. Next, we interchange the order of integration and employ the
auxiliary integral (Erdélyi et al. 1953, formula 1.5(29))∫ π

0

(sin t)z−1+δe−tsdt

=
π

2z−1+δ

Γ (z + δ) e−πs/2

Γ (1/2 + z/2 + δ/2 + is/2)Γ (1/2 + z/2 + δ/2− is/2)
. (A 6)
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As a result we find

L(z, δ) = −2−δ

δ
+
Γ (z + δ)

Γ (z)

π

2z−1+δ

×
∫ ∞

0

sz−1

Γ (1/2 + z/2 + δ/2 + is/2)Γ (1/2 + z/2 + δ/2− is/2)

e−πs/2

1− e−πs
ds. (A 7)

Denote the integrand in (A 7) by F(s), say, and observe that F(seπi) = eπizF(s), s > 0.
Then the integral can be extended to an integral along the whole real axis of the
s-plane, to be evaluated by residue calculus:∫ ∞

0

F(s) ds =
1

1 + eπiz

∫ ∞
−∞
F(s) ds =

e−πiz/2

2 cos(πz/2)
2πi

∞∑
n=1

Res
s=2in

F(s). (A 8)

Here, the integration path has been closed in the upper half-plane Im (s) > 0, where
F(s) has simple poles at s = 2in, n = 1, 2, 3, . . .. Finding the residues is straightforward
and we are led to the representation

L(z, δ) = −2−δ

δ
+
Γ (z + δ)

Γ (z)

cos[π(z + δ)/2]

cos(πz/2)
2−δ

×
∞∑
n=1

Γ (1/2− z/2− δ/2 + n)

Γ (1/2 + z/2 + δ/2 + n)

1

n1−z ; (A 9)

here, we used the reflection formula Γ (1/2+v)Γ (1/2−v) = π/ cos (πv), cf. Abramowitz
& Stegun (1965, formula 6.1.17). Since Γ (n + a)/Γ (n + b) ∼ na−b as n → ∞,
(Abramowitz & Stegun 1965, formula 6.1.47), the series in (A 9) compares to∑∞

n=1 n
−1−δ and is, therefore, convergent when δ > 0. Now we rewrite (A 9) as

L(z, δ) = −2−δ

δ
+
Γ (z + δ)

Γ (z)

cos [π(z + δ)/2]

cos (πz/2)
2−δ

×
[ ∞∑
n=1

{
Γ (1/2− z/2− δ/2 + n)

Γ (1/2 + z/2 + δ/2 + n)

1

n1−z −
1

n1+δ

}
+ ζ(1 + δ)

]
, (A 10)

where ζ( · ) denotes the Riemann zeta-function. To obtain L(z), we take the limit δ ↓ 0
in (A 10). In the evaluation of the limit we need the auxiliary results

Γ (z + δ)

Γ (z)
= 1 + ψ(z) δ + O(δ2),

cos [π(z + δ)/2]

cos (πz/2)
= 1− π

2
tan (πz/2) δ + O(δ2),

ζ(1 + δ) =
1

δ
+ E + O(δ),

where ψ(z) = Γ ′(z)/Γ (z), and E = 0.5772 . . . is Euler’s constant. The first two auxiliary
results are straightforward, whereas the third result stems from Abramowitz & Stegun
(1965, formula 23.2.5). Then the δ−1-terms occurring in (A 10) cancel, as they should,
and the limit is found to be

L(z) = ψ(z)− π

2
tan (πz/2) + P (z) + E, (A 11)
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where

P (z) =

∞∑
n=1

{
Γ (1/2− z/2 + n)

Γ (1/2 + z/2 + n)

1

n1−z −
1

n

}
. (A 12)

The representation (A 11) for L(z) is valid, first for Re(z) > 1, and next for all complex
z by analytic continuation.

The representation (A 11) is well suited to find the singularities of L(z). Consider
first the series (A 12) for P (z). Since (Abramowitz & Stegun 1965, formula 6.1.47)

Γ (1/2− z/2 + n)

Γ (1/2 + z/2 + n)
= n−z[1 + O(n−2)] (n→∞)

the series (A 12) compares to
∑∞

n=1 n
−3 and is convergent for all z. The terms in the

series have simple poles at z = 2k + 1, k = 1, 2, 3, . . ., and

Res
z=2k+1

P (z) =

k∑
n=1

n2k

(k + n)!
Res
z=2k+1

Γ (1/2− z/2 + n)

= 2(−1)k+1

k∑
n=1

(−1)nn2k

(k + n)!(k − n)! = −1, (A 13)

where the finite sum can be obtained by a (2k)-fold differentiation of the Fourier
series

(sin t)2k =
1

22k

(2k)!

k!k!
+

(2k)!

22k−1

k∑
n=1

(−1)n

(k + n)!(k − n)! cos (2nt)

at t = 0. Additionally, ψ(z) is analytic except for simple poles at z = −k, k = 0, 1, 2, . . .,
with

Res
z=−k ψ(z) = −1;

tan (πz/2) is analytic except for simple poles at z = 2k + 1, k = 0,±1,±2, . . ., with

Res
z=2k+1

π

2
tan (πz/2) = −1.

Using these results in (A 11), we find that L(z) has removable singularities at z = 2k+1,
k = ±1,±2, . . ., since the residues of its constituents cancel. Consequently, L(z) is
analytic in the whole z-plane, except for simple poles at z = 1 and z = −2k,
k = 0, 1, 2, . . ., with

Res
z=1

L(z) = −Res
z=1

π

2
tan(πz/2) = 1, Res

z=−2k
L(z) = Res

z=−2k
ψ(z) = −1. (A 14)

This completes the analysis of L(z), so far as needed in the asymptotics of W (p) for
small pitch.

For large pitch we need the values of L(3) and L(5), to be substituted into (4.8).
The representation (A 11) is less suitable for the evaluation. Therefore, we return to
the original definition (4.5) of L(z), which yields

L(2k + 3) =

∫ ∞
0

[
(sin t)2k+2

t2k+3
− H(1/2− t)

t

]
dt. (A 15)
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The evaluation of (A 15) for k = 0, 1, proceeds through repeated integration by parts
and use of the auxiliary integral (Abramowitz & Stegun 1965, formulae 5.2.2, 5.2.27)∫ ∞

0

[
cos (2at)

t
− H(1/2− t)

t

]
dt =

∫ a

0

cos t− 1

t
dt+

∫ ∞
a

cos t

t
dt = −E − log a.

(A 16)

In this manner we find

L(3) =

∫ ∞
0

[
sin2 t

t3
− H(1/2− t)

t

]
dt

= − sin2 t

2t2

∣∣∣∣∞
0

− D(sin2 t)

2t

∣∣∣∣∞
0

+

∫ ∞
0

[
D2(sin2 t)

2t
− H(1/2− t)

t

]
dt

= 1
2

+ 1 +

∫ ∞
0

[
cos (2t)

t
− H(1/2− t)

t

]
dt

= −E + 3
2
, (A 17)

where D = d/dt. Similarly,

L(5) =

∫ ∞
0

[
sin4 t

t5
− H(1/2− t)

t

]
dt

= − sin4 t

4t4

∣∣∣∣∞
0

− D(sin4 t)

12t3

∣∣∣∣∞
0

− D2(sin4 t)

24t2

∣∣∣∣∞
0

− D3(sin4 t)

24t

∣∣∣∣∞
0

+

∫ ∞
0

[
1

24t
D4( 3

8
− 1

2
cos (2t) + 1

8
cos (4t))− H(1/2− t)

t

]
dt

= 1
4

+ 1
3

+ 1
2

+ 1− 1
3

∫ ∞
0

[
cos (2t)

t
− H(1/2− t)

t

]
dt

+
4

3

∫ ∞
0

[
cos (4t)

t
− H(1/2− t)

t

]
dt

= −E + 25
12
− 4

3
log 2. (A 18)

These results were used in obtaining (4.9).
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